

What do words mean?

N-gram or text classification methods we've seen so far
Words are just strings (or indices wi in a vocabulary list)
That's not very satisfactory!
Introductory logic classes:
The meaning of 'fog' is DOG; cat is CAT
YX DOG(0 — MAMMAL(x)
Old linguistics joke by Barbara Partee in 1967:
O.: What's the meaning of life?
A: LIFE
That seems hardly better!

3

1 2

What should a theory of word meaning do for us?
 Let's look at some desiderata
 From lexical semantics, the linguistic study of word meaning

Lemma mouse (N)

1. any of numerous small rodents...
2. a hand-operated device that controls a cursor...

Modified from the online thesaurus WordNet

A sense or "concept" is the meaning component of a word
Lemmas can be polysemous (have multiple senses)

* Synonyms have the same meaning in some or all contexts.

• filbert / hazelnut

• couch / sofa

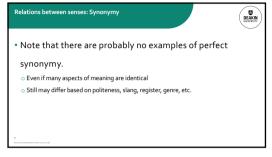
• big / large

• automobile / car

• vomit / throw up

• water / H₂o

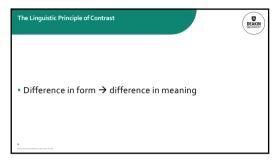
4 5 6



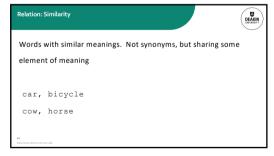
water/H₂O

"H₂O" in a surfing guide?
big/large

my big sister!= my large sister

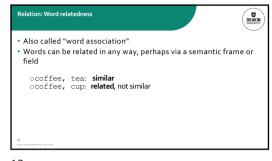


7 8 9

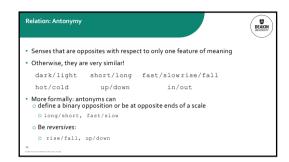




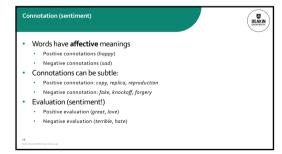
10 11 12

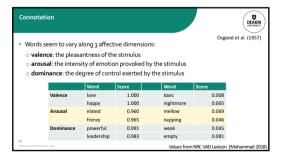






13 14 15





* Concepts or word senses

Have a complex many-to-many association with words (homonymy, multiple senses)

Antonymy

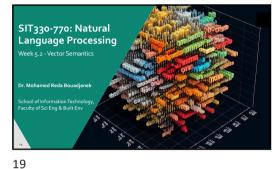
Antonymy

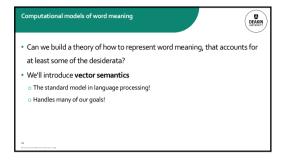
Similarity

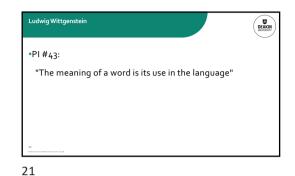
Relatedness

Connotation

16 17 18



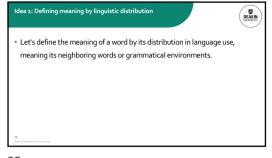


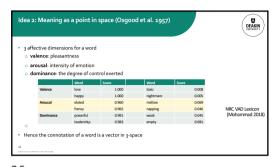


One way to define "usage":
 words are defined by their environments (the words around them)

 Zellig Harris (1954):
 If A and B have almost identical environments we say that they are synonyms.

22 23 24

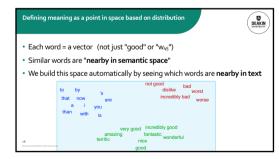




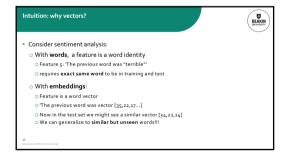
Idea 1: Defining meaning by linguistic distribution

Idea 2: Meaning as a point in multidimensional space

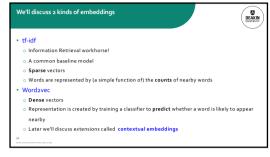
25 26 27

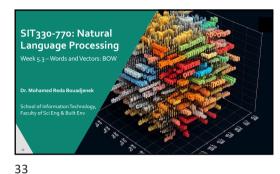


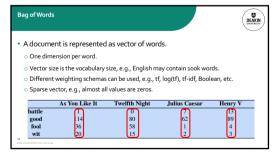
Called an "embedding" because it's embedded into a space (see textbook)
 The standard way to represent meaning in NLP
 Every modern NLP algorithm uses embeddings as the representation of word meaning
 Fine-grained model of meaning for similarity

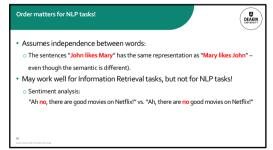


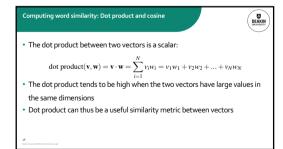
28 29 30



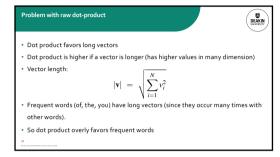


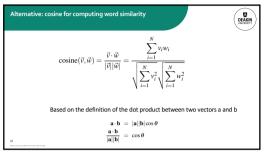


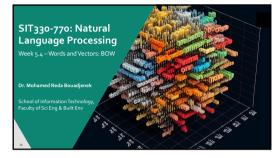




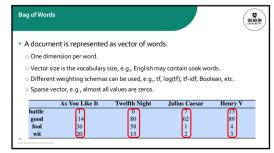
34 35 36







37 38 39



40

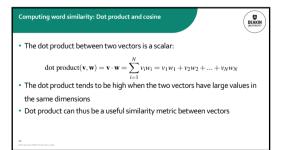
Assumes independence between words:

The sentences "John likes Mary" has the same representation as "Mary likes John" – even though the semantic is different).

May work well for Information Retrieval tasks, but not for NLP tasks!

Sentiment analysis:

"Ah no, there are good movies on Netflix!" vs. "Ah, there are no good movies on Netflix!"



Problem with raw dot-product

- Dot product favors long vectors
- Dot product is higher if a vector is longer (has higher values in many dimension)
- Vector lengt

$$|\mathbf{v}| = \sqrt{\sum_{i=1}^{N} v_i^2}$$

- Frequent words (of, the, you) have long vectors (since they occur many times with other words).
- · So dot product overly favors frequent words
- ***

43

46

Alternative: cosine for computing word similarity $\cos \operatorname{ine}(\vec{v},\vec{w}) = \frac{\vec{v}\cdot\vec{w}}{|\vec{v}||\vec{w}|} = \frac{\displaystyle\sum_{i=1}^{N} v_i w_i}{\displaystyle\sqrt{\displaystyle\sum_{i=1}^{N} v_i^2} \sqrt{\displaystyle\sum_{i=1}^{N} w_i^2}}$ Based on the definition of the dot product between two vectors \mathbf{a} and \mathbf{b} $\mathbf{a}\cdot\mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\theta$ $\frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{a}||\mathbf{b}|} = \cos\theta$

• tf-idf (or PMI) vectors are

olong (length |V|= 20,000 to 50,000)

osparse (most elements are zero)

• Alternative: learn vectors which are

oshort (length 50-1000)

odense (most elements are non-zero)

45

48

44

.3

Why dense vectors?

 Short vectors may be easier to use as features in machine learning (fewer weights to tune)
 Dense vectors may generalize better than explicit counts
 Dense vectors may do better at capturing synonym:
 Ocar and automobile are synonyms; but are distinct dimensions
 a word with car as a neighbor and a word with automobile as a neighbor should be similar, but aren't
 In practice, they work better

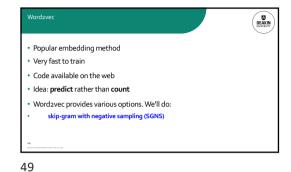
47

"Neural Language Model"-inspired models
 • Where I Language Model"-inspired models
 • Wordzvec (skipgram, CBOW), GloVe
 • Singular Value Decomposition (SVD)
 • A special case of this is called LSA – Latent Semantic Analysis
 • Alternative to these "static embeddings":
 • Contextual Embeddings (ELMo, BERT)
 • Compute distinct embeddings for a word in its context
 • Separate embeddings for each token of a word

Simple static embeddings you can download!

 Wordzvec (Mikolov et al)
 https://code.google.com/archive/p/wordzvec/

 GloVe (Pennington, Socher, Manning)
 http://nlp.stanford.edu/projects/glove/



1. Treat the target word t and a neighboring context word c as positive examples.
2. Randomly sample other words in the lexicon to get negative examples
3. Use logistic regression to train a classifier to distinguish those two cases
4. Use the learned weights as the embeddings

51

54

DEAKIN UNIVERSITY

• (assuming a +/- 2 word window)

And assigns each pair a probability:

P(+|w, c)
 P(-|w, c) = 1 − P(+|w, c)

(apricot, jam)

(apricot, aardvark)

c1

...lemon, a [tablespoon of apricot jam, a] pinch...

c2 [target] c3 c4

Goal: train a classifier that is given a candidate (word, context) pair

• Remember: two vectors are similar if they have a high dot product

• Cosine is just a normalized dot product

• So:

• Similarity(w,c) ∝ w ⋅ c

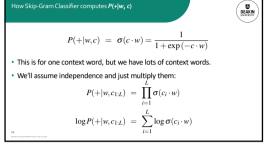
• We'll need to normalize to get a probability

• (cosine isn't a probability either)

Turning dot products into probabilities $\begin{array}{c} \bullet \;\; \text{Sim}(\mathbf{w}, \mathbf{c}) = \mathbf{w} \cdot \mathbf{c} \\ \bullet \;\; \text{To turn this into a probability} \\ \bullet \;\; \text{We'll use the sigmoid from logistic regression:} \\ P(+|w,c) \;\; = \;\; \sigma(c \cdot w) = \frac{1}{1 + \exp(-c \cdot w)} \\ P(-|w,c) \;\; = \;\; 1 - P(+|w,c) \\ &= \;\; \sigma(-c \cdot w) = \frac{1}{1 + \exp(c \cdot w)} \end{array}$

52 53

DEAKIN



A probabilistic classifier, given

a test target word w

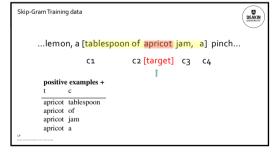
its context window of L words $C_{1:L}$ Estimates probability that w occurs in this window based on similarity of w (embeddings) to $C_{1:L}$ (embeddings).

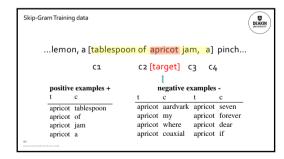
To compute this, we just need embeddings for all the words.

SIT330-770: Natural Language Processing
Week s.5-Wordzvec: Learning the embeddings

Dr. Mohamed Reda Bouadjenek
School of Information Technology,
Faculty of Sci Eng & Built Env

55 56 57





58 59 60

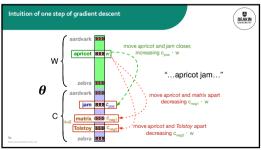
Given the set of positive and negative training instances, and an initial set of embedding vectors
 The goal of learning is to adjust those word vectors such that we:
 Maximize the similarity of the target word, context word pairs (w, cpool) drawn from the positive data
 Minimize the similarity of the (w, cool) pairs drawn from the negative data.

- Maximize the similarity of the target with the actual context words, and minimize the similarity of the target with the k negative sampled non-neighbor words. $L_{CE} = -\log \left[P(+|w,c_{post}) \prod_{i=1}^k P(-|w,c_{negi}) \right] \\ = -\left[\log P(+|w,c_{post}) + \sum_{i=1}^k \log P(-|w,c_{negi}) \right] \\ = -\left[\log P(+|w,c_{post}) + \sum_{i=1}^k \log \left(1 - P(+|w,c_{negi}) \right) \right] \\ = -\left[\log P(-|w,c_{post}) + \sum_{i=1}^k \log \left(1 - P(-|w,c_{negi}) \right) \right] \\ = -\left[\log \sigma(c_{post} \cdot w) + \sum_{i=1}^k \log \sigma(-c_{negi} \cdot w) \right]$

How to learn?
Stochastic gradient descent!

We'll adjust the word weights to make the positive pairs more likely and the negative pairs less likely, over the entire training set.

61 62 63



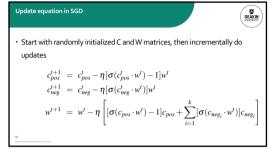
64

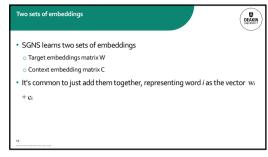
Reminder: gradient descent

• At each step
• Direction: We move in the reverse direction from the gradient of the loss function
• Magnitude: we move the value of this gradient $\frac{d}{2hv}L(f(x;w),y)$ weighted by a learning rate η • Higher learning rate means move w faster $w^{t+1} = w^t - \eta \, \frac{d}{dw} L(f(x;w),y)$

The derivatives of the loss function $L_{CE} = -\left[\log\sigma(c_{pos}\cdot w) + \sum_{i=1}^{k}\log\sigma(-c_{neg_i}\cdot w)\right]$ $\frac{\partial L_{CE}}{\partial c_{pos}} = \left[\sigma(c_{pos}\cdot w) - 1\right]w$ $\frac{\partial L_{CE}}{\partial c_{neg}} = \left[\sigma(c_{neg}\cdot w)\right]w$ $\frac{\partial L_{CE}}{\partial c_{neg}} = \left[\sigma(c_{pos}\cdot w) - 1\right]c_{pos} + \sum_{i=1}^{k}\left[\sigma(c_{neg_i}\cdot w)\right]c_{neg_i}$

66





Summary: How to learn wordzvec (skip-gram) embeddings

Start with V random d-dimensional vectors as initial embeddings

Train a classifier based on embedding similarity

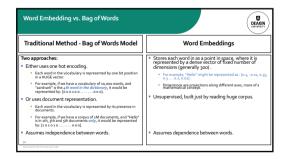
Take a corpus and take pairs of words that co-occur as positive examples

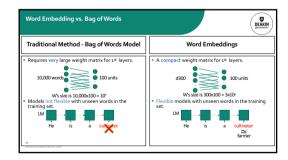
Take pairs of words that don't co-occur as negative examples

Train the classifier to distinguish these by slowly adjusting all the embeddings to improve the classifier performance

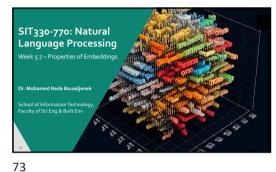
Throw away the classifier code and keep the embeddings.

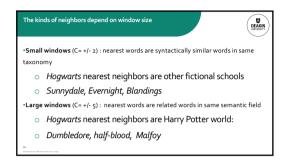
67 68 69





70 71 72





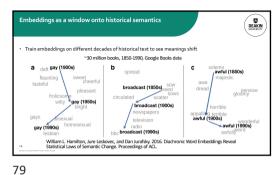
Analogical relations DEAKIN • The classic parallelogram model of analogical reasoning (Rumelhart and Abrahamson 1973) • To solve: "apple is to tree as grape is to _____" • Add tree – apple to grape to get vine apple, grape

75

74

Analogical relations via parallelogram • The parallelogram method can solve analogies with both sparse and dense embeddings (Turney and Littman 2005, Mikolov et al. 2013b) king – man + woman is close to queen Paris – France + Italy is close to Rome • For a problem a:a*::b:b*, the parallelogram method is: $\hat{b}^* = \operatorname{argmax} \operatorname{distance}(x, a^* - a + b)$

Caveats with the parallelogram method • It only seems to work for frequent words, small distances and certain relations (relating countries to capitals, or parts of speech), but not others. (Linzen 2016, Gladkova et al. 2016, Ethayarajh et al. 2019a) • Understanding analogy is an open area of research (Peterson et al. 2020)



SIT330-770: Natural Language

Week 5 - Sequence Labeling

School of Information Technology, Faculty of Sci Eng & Built Env

Dr. Mohamed Reda Bouadjenek

Processing

82

Historical embedding as a tool to study cultural biases Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. Proceedings of the National Academy of Sciences 115(16), E3635–E3644. Compute a gender or ethnic bias for each adjective: e.g., how much closer the adjective is to "woman" synonyms than "man" synonyms, or names of particular Embeddings for competence adjective (smart, wise, brilliant, resourceful, thoughtful, logical) are biased toward men, a bias slowly decreasing 1960-1990 • Embeddings for dehumanizing adjectives (barbaric, monstrous, bizarre) were biased toward Asians in the 1930s, bias decreasing over the 20th century.

These match the results of old surveys done in the 1930s

80

DEAKIN

SIT330-770: Natural Language Processing Week 5.8 - English Word Classes Dr. Mohamed Reda Bouadjenek School of Information Technol Faculty of Sci Eng & Built Env ng a word? Its a impressively version to the company of May 20, period at 5 PM in the afternoon on Monday, 27 May 20,

Parts of Speech

81

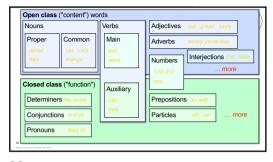
• From the earliest linguistic traditions (Yaska and Panini 5th C. BCE, Aristotle 4th C. BCE), the idea that words can be classified into grammatical categories o part of speech, word classes, POS, POS tags

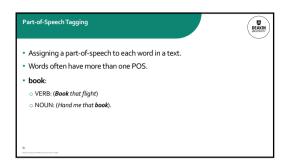
• 8 parts of speech attributed to Dionysius Thrax of Alexandria (c. 1st C. BCE): o noun, verb, pronoun, preposition, adverb, conjunction, participle, article

o These categories are relevant for NLP today.

84

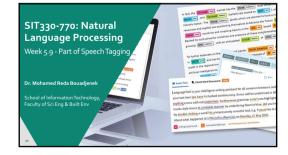
83



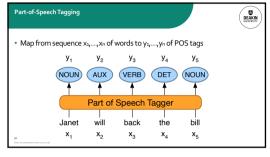


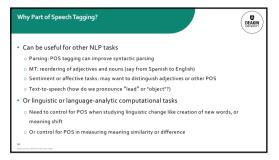
5 86 87

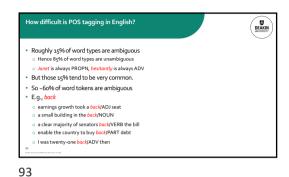
	Tag	Description	Example
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
Class	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
Ü	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
Open (VERB	words for actions and processes	draw, provide, go
Of	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by under
90		spacial, temporal, or other relation	
puc	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
1	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
Closed Class Words	DET	Determiner: marks noun phrase properties	a, an, the, this
D.	NUM	Numeral	one, two, first, second
sed	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
8	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
•	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
25	PUNCT	Punctuation	;,0
Other	SYM	Symbols like \$ or emoji	\$, %
_	X	Other	asdf, qwfg

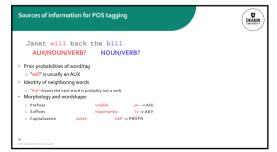


88 89 90





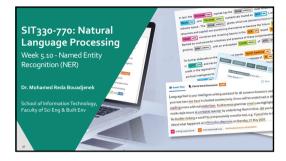


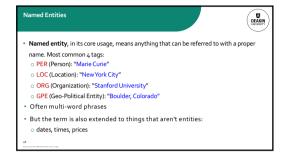


Standard algorithms for POS tagging

Supervised Machine Learning Algorithms:
Hidden Markov Models
Conditional Random Fields (CRF) / Maximum Entropy Markov Models (MEMM)
Neural sequence models (RNNs or Transformers)
Large Language Models (like BERT), finetuned
All required a hand-labeled training set, all about equal performance (97% on English)
All make use of information sources we discussed
Via human created features: HMMs and CRFs
Via representation learning: Neural LMs

94 95 96





Named Entity tagging

 The task of named entity recognition (NER):
 find spans of text that constitute proper names
 tag the type of the entity.

97 98 99

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

Sentiment analysis: consumer's sentiment toward a particular company or person?
 Question Answering: answer questions about an entity?
 Information Extraction: Extracting facts about entities from text.

1) Segmentation

In POS tagging, no segmentation problem since each word gets one tag.

In NER we have to find and segment the entities!

Type ambiguity

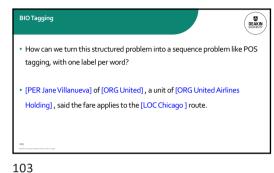
IPER Washington] was born into slavery on the farm of James Burroughs.

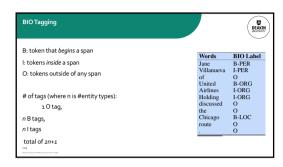
IORG Washington] went up 2 games to 1 in the four-game series.

Blair arrived in ILOC Washington] for what may well be his last state visit.

In June, IGPE Washington] passed a primary seatbelt law.

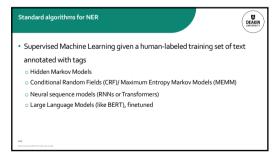
100 101 102

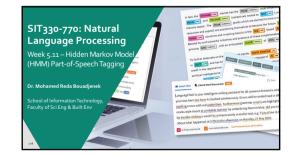




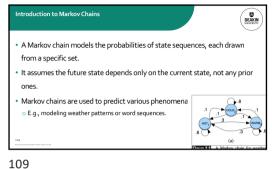
.03 104 105

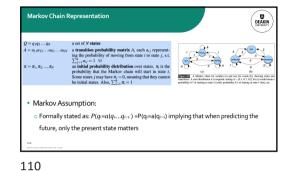
вют	agging variants:	IO and BIOES			DEAKIN
• [PE	R Jane Villanue	eva] of [ORG Uni	ted], a unit of [OI	RG United Airlines	
Hol	lding] . said the	fare applies to t	the [LOC Chicago	1 route.	
	Words	IO Label	BIO Label	BIOES Label	
	Jane	I-PER	B-PER	B-PER	
	Villanueva	I-PER	I-PER	E-PER	
	of	О	0	0	
	United	I-ORG	B-ORG	B-ORG	
	Airlines	I-ORG	I-ORG	I-ORG	
	Holding	I-ORG	I-ORG	E-ORG	
	discussed	О	0	0	
	the	O	Ö	0	
	Chicago	I-LOC	B-LOC	S-LOC	
	route	О	0	0	
146		Ó	Ó	0	





106 107 108





The Hidden Markov Model • A Markov chain computes probabilities for sequences of observable events. · But often, the events of interest are hidden. o Example: Part-of-speech tags in text—hidden because we don't observe them directly. • Solution: Hidden Markov Model (HMM) handles both observed and hidden events. o HMMs augment Markov chains

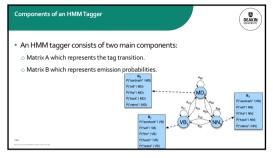
111

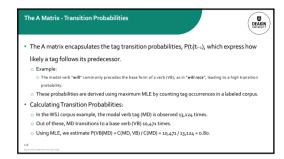
Probabilistic Sequence Modeling with HMMs DEAKIN · A Hidden Markov Models (HMM) is a probabilistic sequence model that, given a sequence of units (words, letters, morphemes, sentences, etc.), computes a probability distribution over possible sequences of labels. HMMs determine the likelihood of different label sequences and select the most probable sequence based on the observed data. o HMM is based on augmenting the Markov chain

Input and Assumptions • Input (O): Sequence of observations ($o_1, o_2, ..., o_T$) drawn from vocabulary V. Assumptions of first-order HMM: Markov Assumption: $\circ\,$ Probability of state q-depends only on the previous state (q-a). • $P(q_i|q_1...q_{i-1}) = P(q_i|q_{i-1})$ o Output Independence: o Probability of observation or depends only on the state that produced it qu * P(a |q.,...q.,...,q.,o.,...,a,...,o.) = P(a |q.)

SIT330-770: Natural Language Processing Week 5.12 – The components of an HMM tagger

112 113 114





The B Matrix - Emission Probabilities

The B matrix contains emission probabilities, P(w|t), which quantify the likelihood of a word being tagged with a specific tag.

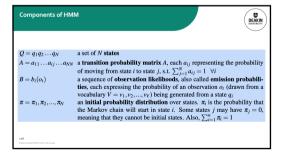
Emission Probability Calculation

To calculate emission probabilities, we count how often a word occurs with a particular tag in a corpus.

For instance, the MD tag associated with the word 'will' occurs 4,046 times in the WSJ corpus.

Hence, P(will|MD) is calculated as C(MD, will) / C(MD) = 4,046 / 13,124 = 0.31.

115 116 117



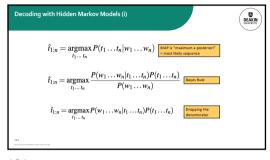
• Decoding with Hidden Markov Models

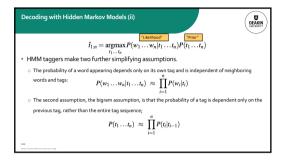
• Decoding is the process of determining the most probable sequence of hidden states (tags) based on observed data.

• Given a sequence of observations $O = o_1, o_2, \ldots, o_7$, decoding aims to find the most probable sequence of states $Q = q_1 q_2 \ldots q_7$.

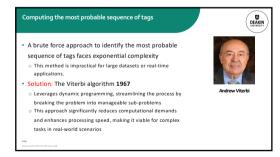
• The input is an HMM A = (A, B), with A being the transition probabilities and B the emission probabilities. $\hat{I}_{1:n} = \underset{I_1 \ldots I_n}{\operatorname{argmax}} P(t_1 \ldots t_n | w_1 \ldots w_n)$

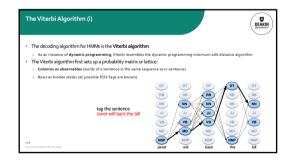
118 119 120



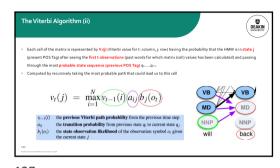


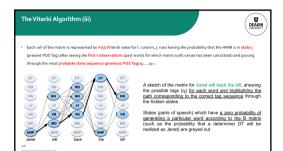
121 122 123



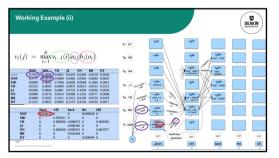


124 125 126





127 128 129



NER Evaluation Metrics for Named Entity Recognition (NER)

NER Evaluation Basics:
Unlike POS tagging, evaluated on accuracy, NER uses recall, precision, and Fa score.
Recall measures correctly identified entities against all actual entities.
Precision counts correct labels against all labeling attempts.
The Fa score provides a balance between precision and recall, serving as a single metric for accuracy.
Challenges in NER:
NER systems treat entities as single units for evaluation, leading to challenges not seen in POS tagging.
The systems that entities as single units for evaluation, leading to challenges not seen in POS tagging.
The systems that entities as single units for evaluation, leading to challenges not seen in POS tagging.
The systems that entities as single units for evaluation, leading to challenges not seen in POS tagging.
The systems that entities as single units for evaluation, leading to challenges not seen in POS tagging.
The systems that entities as single units for evaluation, leading to challenges not seen in POS tagging.
The systems that entities as single units for evaluation, leading to challenges not seen in POS tagging.
The systems that entities as single units for evaluation, leading to challenges not seen in POS tagging.
The systems that entities as single units for evaluation, leading to challenges not seen in POS tagging.